isSimplified

Overview

The isSimplified method checks if a value is in its most simplified version. isSimplified does not take any value property, and is generally used as a supporting method in conjunction with equivSymbolic.


  • Allow decimal marks

    Authors can specify what separators can be used by the student. From the Thousand Separator drop down menu you can select dot, comma, and/or space. The Decimal Separator menu contains the option for either a dot or a comma. Note that the specified thousand separator and decimal separator cannot be the same, e.g. both dot.


  • Inverse result

    Enabling this means that the value specified in the Value field will not be accepted as the correct answer. It is a useful way of excluding very specific answers from validation.



Example

isSimplified does not take any value, which means when used alone it will validate any mathematical expression or fraction presented at its simplest form.

AnswerMarking
\(x\)true
\(x^2\)true
\(4x + 1\)true
\(\frac{3}{7}\)true
\(x(x)\)false
\(4x + 2 + 1\)false
\(\frac{9}{21}\)false
Source
{
    "instant_feedback": true,
    "is_math": true,
    "stimulus": "Enter a simplified expression.",
    "type": "formulaV2",
    "ui_style": {
        "type": "block-on-focus-keyboard"
    },
    "validation": {
        "scoring_type": "exactMatch",
        "valid_response": {
            "score": 1,
            "value": [
                {
                    "method": "isSimplified"
                }
            ]
        }
    }
}


Combining Methods

Example 1

isSimplified is generally used in a bundle with other scoring methods. In this example we use isSimplified combined with equivSymbolic and put the whole expression in the equivSymbolic Value field in validation, to ensure students responses are not only simplified but they also match the expression.

AnswerMarking
\(x^2 + \frac{1}{4}x\)true
\(x^2 + \frac{x}{4}\)true
\(x(x + \frac{1}{4})\)false
\(x^2 + \frac{3x}{12}\)false
Source
{
    "instant_feedback": true,
    "is_math": true,
    "stimulus": "Enter a simplified expression of \\(x(x+\\frac{3}{12})\\) ",
    "type": "formulaV2",
    "ui_style": {
        "type": "block-on-focus-keyboard"
    },
    "validation": {
        "scoring_type": "exactMatch",
        "valid_response": {
            "score": 1,
            "value": [
                {
                    "method": "isSimplified"
                },
                {
                    "method": "equivSymbolic",
                    "value": "x(x+\\frac{3}{12})",
                    "options": {
                        "allowDecimal": false
                    }
                }
            ]
        }
    }
}


Example 2

This is another case of combining simplification with equivSymbolic. In this example the correct answer is a fraction in its simplest form. Remember that you do not need to work out the correct response. Simply insert the unsimplified fraction in the Value field of equivSymbolic validation.

AnswerMarking
\(1\frac{3}{4}\)true
\(1.75\)true
\(\frac{7}{4}\)true
\(\frac{700}{400}\)false
\(1\frac{15}{20}\)false
Source
{
    "instant_feedback": true,
    "is_math": true,
    "stimulus": "Rewrite the fraction \\(\\frac{1400}{800}\\) in its simplest form.",
    "type": "formulaV2",
    "ui_style": {
        "type": "block-on-focus-keyboard"
    },
    "validation": {
        "scoring_type": "exactMatch",
        "valid_response": {
            "score": 1,
            "value": [
                {
                    "method": "equivSymbolic",
                    "options": {
                        "inverseResult": false,
                        "decimalPlaces": 10,
                        "ignoreOrder": false
                    },
                    "value": "\\frac{1400}{800}"
                },
                {
                    "method": "isSimplified",
                    "options": {
                        "inverseResult": false,
                        "decimalPlaces": 10
                    }
                }
            ]
        }
    }
}